go to SALMON home age


Visit the SALMON Bookshop for recommended
books on this topic
The Nature and Nurture of Gender
Author Paul Kenyon



The contents of this lecture should surprise and interest you. The heart of the lecture is a section describing two opposing views on the development of gender.
Gender consists of three elements:

  • gender role: adoption of masculine or feminine behavioral traits that are deemed appropriate or characteristic of a particular sex
  • gender identity: a person's private, subjective sense of their own sex
  • sexual orientation / preference: erotic desire for people of same or different sex

The widely held view that gender is the result of the nurture we receive as children is contrasted with the idea that gender is influenced with biological factors in our nature. The lecture explores some evidence that supports the latter position.

A series of experiments showing that it is possible to effect the sexual behaviour of animals by manipulating hormones circulating in their bodies during early development is presented.

An important message from these studies is that the mammalian brain and external genitalia tend to develop as female unless they are exposed to androgens in infancy.

This finding has important implications for human development which are explored by presenting a study that suggests that girls that are exposed to testosterone in utero exhibit masculine behaviour patterns in adulthood.

What do we mean by the terms sex and gender?

Sex is a biological term which refers to the functional differences between males and females and their reproductive potential

  • sex is determined by genes in chromosomes
  • male and female are biological terms

Gender is a psychological term which refers to our awareness and reaction to biological sex

  • gender is determined by biological, psychological and sociological factors
  • masculine and feminine are psychological terms which refer to a person's gender

Gender consists of several elements:

  • gender role: adoption of masculine or feminine behavioral traits that are deemed appropriate or characteristic of a particular sex
  • gender identity: a person's private, subjective sense of their own sex
  • sexual orientation / preference: erotic desire for people of same or different sex
Biological and psychological variables that affect gender
  • Chromosomes
  • Gonads
  • Prenatal hormones
  • Internal accessory organs
  • External genital appearance
  • Pubertal hormones
  • Assigned gender
  • Gender identity

The development of gender: Nature or Nurture?

There are two fundamentally different explanations for how gender develops.

Many psychologists believe that gender is the result of environmental influences, particularly the way we are treated by our parents, guardians, friends and relatives. According to Dr John Money we are psychosexually neutral at birth, and our gender is a consequence of the nurture we receive as children.

A less popular view is that gender is the result of nature, particularly the effects of hormones on the developing brain.

This is not a dry academic argument. The lives of a significant number of people have been changed as a result of the application of these theories.

Point to ponder:

  • How do you think theories of gender development might have influenced the way parents raise their children?


This web page describes some of the evidence that suggests that gender may the result of exposure to hormones in the first few weeks of life.

Are there sex differences in human behaviour?

Prenatal exposure to androgen could influence the development of gender role behaviours - behaviours that are typical of one or the other sex e.g. boys playing with construction toys; girls playing with dolls

Berenbaum (1999) has shown clear differences in activities and job interests between adolescent boys and girls.



Male adolescent gender role activities (Berenbaum,1999) Female adolescent gender role activities (Berenbaum,1999)
Work with engines and electronics Think about becoming a secretary or typist
Football Needlepoint, embroidery, macramé
Think about becoming a car mechanic Go to slumber parties
Ride motorcycle Collect dolls
Build models Try out for cheerleading
Hunting Write in diary
Yard work or take out garbage Read teen magazine
Baseball Read glamour or fashion magazines
Wash or wax the car Sewing or knitting
Read sports magazines Read romantic novels
Play sports games Make jewellery
Fishing Play dress-up
Basketball Play with make-up

Here is some unpublished data collected by Corrine Hutt (University of Reading, UK) who observed aggressive behaviour in pre-school children in a nursery situation.

She found that overall boys were more aggressive than girls; most aggressive acts tended to involve boys fighting with other boys. The amount of aggression by boys directed towards girls and vice versa tended to be relatively low.

Corrine argued that this sex difference in aggression was due to masculinization of the brain by testosterone

Development of male and female external genitalia

Perhaps the first question asked by parents and relatives after a child is born is "What sex is the child?". According to the nurture view of psychosexual differentiation this is the point at which shaping the child's gender identity begins. But the process may have started many weeks before when the baby was developing in the mother's womb. This series of diagrams shows how the development of a child's external genitalia is affected by exposure to the androgen dihydrotestosterone.

An important message from this diagram is that - regardless of genetic sex -

In early intrauterine development male and female external genitalia (visible sex organs) are identical.
Under the influence of the androgen dihydrotestosterone, the external genitalia develop in the male direction. In the absence of androgens female external genitalia develop.

The crucial point about this diagram is that tissues that are equivalent for the two sexes in the undifferentiated state will become different organs by the time of birth. You can follow this change by tracing the fates of the different coloured tissue. The top diagram shows the undifferentiated state. The middle diagrams shows differentiation beginning during the third and fourth months of pregnancy. The bottom diagrams show complete differentiation of the external genitalia at birth.

These diagrams are based on the drawings found in most textbooks that cover the the biological bases of sexual behaviour.

Here is an animated diagram of the effects of androgen exposure on external genital development that will open in a new browser window.

Activational and organizational effects of hormones

The nature and nurture views of psychosexual development differ in the significance they attach to the importance of hormones in the development of behavioural differences between males and females.

Hormones have two fundamentally different effects on sexual behaviour:
Organizational effects refer to the effects of hormones during the early development of an animal
Activational effects refer to the effects of hormones in the adult organism

There is evidence that exposure to hormones during a critical period of development changes the way in which the organism reacts to hormones in adulthood. Notice that this does not mean that early exposure to hormones has a permanent effect on behaviour. Instead it suggests that exposure to hormones in infancy affects how the adult reacts to hormones.

In other words, early exposure to hormones organizes the way behaviour is activated by hormones in adulthood. We need to spend a few moments reviewing how the activational effects of hormones on behaviour are measured.

Hormones such as testosterone, estrogen and progesterone, activate sexual behaviour of adult male and female rats

Many studies measure female sexual behaviour in terms of 'lordosis'. Lordosis refers to a characteristic posture in which the female rodent arches her back and moves her tail to permit penetration by the male.

Sexual behaviour in male rats consists of three behaviours:

The activational effects of hormones are discussed in greater detail on a separate page of this website.

This page focusses on the organizational effects of hormones.

According to the nature theory of psychosexual differentiation, hormones organize the brain during development. In a nutshell:

Castration of male rats in infancy causes them to become:
  • demasculinized and
  • feminized
Treatment of female rats with testosterone in infancy causes them to become:
  • masculinized and
  • defeminized

The organizational effects of the presence or absence of testosterone are only apparent in adulthood when the organism is under the activational effects of testosterone or estrogen and progesterone.

Feminization of male rat by castration in infancy

Exposure to testosterone between about day 17 of gestation to day 8-10 of postnatal life organizes the brain of a male rat to determine how it will react to hormones in adulthood.

If a male rat is castrated at birth, and then given an injection of estrogen in adulthood, it exhibits lordosis, - a female sexual response - when tested with a sexually vigorous male rat.

If a male rat is castrated at birth, and then exposed to a female rat which is in estrus (heat) he will not mate with her.

In contrast, if a normal male is injected with estrogen in adulthood it does not display the lordosis response in the presence of a sexually vigorous male rat. A normal male rat will mate with a female rat in estrus.

Testosterone is thought to establish male circuits (masculinization), and inhibit the development of female brain circuits (defeminization).

Masculinization of female pups by injection of testosterone in infancy

The absence of testosterone organizes the brain of a female rat to determine how it will react to hormones in adulthood.

If a female rat is injected with testosterone during infancy, and then given an injection of testosterone in adulthood, she will show male sexual responses - mount, intromission and ejaculation behaviours - when tested with a female rat in estrus.

If a female rat is injected with testosterone during infancy, and then injected with estrogen in adulthood, she will not exhibit lordosis behaviour when she is tested with a sexually vigorous male rat.

In contrast, if a normal female rat is injected with testosterone in adulthood, she will not exhibit male sexual behaviours.

A normal female rat in estrus will exhibit lordosis when paired with a sexually vigorous male rat.

Testosterone is thought to establish male circuits (masculinization), and inhibit the development of female brain circuits (defeminization).

In the absence of testosterone brain circuits are feminized and demasculinized.

Summary of the effects of male castration and female testosterone treatment

Adult sexual behavior in the rat depends on whether the brain was organized by gonadal hormones during the first few days after birth.

Normal adult males display mounting behavior because their brains were subjected to a dose of testosterone from the gonads just after birth. The same effect can be produced in females by injecting the hormone testosterone.

Depriving male pups of testosterone by castrating them at birth results in a female brain organization. As adults these feminized males, like normal females, display very few attempts to mount, but a high frequency of lordosis when mounted.


The DNA in a cell's nucleus is essentially a set of plans. The plans contain instructions that allow a cell to manufacture proteins. Steroid hormones exert powerful effects on the growth and specialization of cells. When hormones enter a cell's nucleus they open up its set of plans, and set protein manufacture in motion. (See Becker et al, 2002, p32-34)


Hormones travel through the cell membrane and bind with intracellular steroid receptors. This hormone-receptor complex then passes into the nucleus where it activates mRNA transcription which leads to the production of proteins. The resulting proteins then leave the nucleus and pass into the cell cytoplasm.

This picture shows the process:


When testosterone travels across the cell membrane it is converted into estrogen by the enzyme aromatase. The estrogen attaches to a receptor which takes it into the cell's nucleus where it initiates the production of proteins based on instructions in the cell's DNA.

It is the expression of this genetic information which is responsible for masculinization.

Thus, in order to masculinize the brain the 'male' steroid hormone testosterone must be converted into the 'female' hormone estrogen. You should read this sentence again. It contains a paradox. It is saying that a 'female' hormone is responsible for producing a male brain.


You might wonder if estrogen - produced by the mother's ovaries during pregnancy - would cause masculinization of a female fetus. But in females alphafetoprotein captures estrogen so that it cannot cross the cell membrane and androgenise the female brain.

It is possible to masculinize the brain and behaviour of female rats by injecting them with such a large dose of estrogen that it overwhelms the alphafetoprotein estrogen-binding mechanism. Consequently the 'female' hormone estrogen can also masculinize brain and behaviour. (See Becker et al, 2002, p87-89)


The following account of the aromatization hypothesis is adapted from Milgram.

"The aromatization hypothesis is an attempt to explain how brain masculinization is caused by high levels of estrogen, which affect estrogen receptors in brain cells.  According to the aromatization hypothesis, masculinization of some brain structures results from the conversion of testosterone to estrogen by an aromatase enzyme (aromatization). This hypothesis was originally proposed to account for the findings that:

Testosterone and dihydroxytestosterone differ in their response to aromatase enzyme; only testosterone is converted to the aromatic compound estrogen.  Thus, dihydroxytestosterone does not produce defeminization.

If this hypothesis is correct, why aren't the brain of young females, who secrete estrogen, masculinized?  One reason may be that ovarian secretion of estrogens are lower than testicular secretion of testosterone. Another factor that serves to prevent the aromatization of estrogen is a protein known as alpha-fetoprotein, which binds to estrogens but not testosterone and restricts the access of estrogens to estrogen receptors in the brain. This suggestion is supported by evidence of high levels of alpha-fetoprotein in young female rodents."

Behaviours influenced by hormone exposure in infancy
Testosterone exposure in infancy affects a range of behaviours not just reproductive behaviours.

Exploratory behaviour influenced by hormone exposure in infancyA number of behaviours in rats are effected by testosterone exposure around birth. These include:

Exploratory behaviour is more extensive among female rats than among male rats. This behaviour is modified when female rats are injected with testosterone shortly after birth. The bar chart shows the frequency of defecation, which is inversely proportional to exploration, during a three minute open-field test. When the females had not been injected with testosterone after birth (left and centre groups) their boli count was significantly less than males. Females that had been masculinized defecated at the same rate as males.

Do hormones affect psychosexual differentiation in humans?

We have already described how androgen masculinizes the external genitalia of a developing baby.

Sometimes female embryos are exposed to abnormally high levels of androgen before birth. A small number of genetic females are born with ambiguous external genitalia. The most common cause of female pseudohermaphroditism is congenital adrenal hyperplasia (CAH) which occurs in about 1 in 5,000 to 15,000 live births. Congenital adrenal hyperplasia (CAH) also known as the adrenogenital syndrome (AGS).

CAH is a disease that affects the manufacture of the "stress" hormone, cortisol. Cortisol is released into the blood stream from the adrenal gland, a small organ near the kidney.

The diagram shows how a deficit in cortisol release disrupts the normal negative feedback between cortisol and ACTH secretion from the pituitary gland.

In CAH patients a metabolic error causes overproduction of androgens (e.g. testosterone) in the adrenal gland. This androgen leads to partial masculinization of the external genitalia of female patients which is corrected surgically at birth and with artificial cortisol supplements.

A great deal of attention has been given to the consequences of excess androgens on the psychosexual differentiation of these children.

We will examine some early psychological studies of these girls (Ehrhardt, 1975) which suggests that exposure to androgen during development causes a partial masculinization of human female behaviour.

Ehrhardt's study of fetally androgenized genetic female children
This picture shows a baby girl born with congenital adrenal hyperplasia (CAH) . Her external genitalia have been partially masculinized (virilized) as a result of exposure to high levels of testosterone whilst in the womb.

Ehrhardt (1975) studied 17 female CAH patients: age 4.3 to 19.9 years, most of the girls were in middle childhood and early adolescence. The comparison sample (n=11) consisted of the girls' sisters who did not have CAH. All the patients were under long-term corrective treatment with replacement cortisol and had undergone surgical correction of the external genitalia, usually in infancy or early childhood. Interviews with children and their mothers, fathers and siblings were tape-recorded. Interview transcripts were rated according to coded scales to elicit information about the child's behaviour.
Activity and aggression in congenital adrenal hyperplasia patients
Girls with CAH were more often described as having high levels of energy expenditure compared to their unaffected siblings. They also tended to prefer to play with boys rather than other girls. Although they tended to start fights more frequently than their sisters, this difference was not statistically significant.

Marriage and motherhood in congenital adrenal hyperplasia patients
This diagram shows that girls with CAH were not very interested in playing with dolls, instead they tended to play with cars, trucks and blocks; toys that are generally preferred by boys.

They showed little interest in future roles as brides or mothers, but were much more concerned with their careers.

Their relatives described them as being indifferent to - or avoiding - contact with babies. For example, they did not participate in caring for infants at home or go out baby-sitting.

Gender role preference behaviours in congenital adrenal hyperplasia patients
Relatives and girls with CAH describe themselves as 'tomboys' during all of their childhood.

35% of the sample were unsure or said that they might have chosen to be a boy if they could start their lives over again. However, Ehrhardt points out that none of the girls were unsure about their gender identity. They did not feel that they were boys and being a girl did not make them unhappy. In other words - as a group - they did not exhibit gender dysphoria.

Conclusion: CAH appears to have a significant effect on gender role behaviours. Patients exhibit significantly more male-typical behaviours than unaffected siblings.

Sexual orientation in CAH/AGS patients
Prenatal exposure to androgen could influence the development of:

Money, Schwartz & Lewis (1984) asked 30 women born with CAH about their sexual orientation. Their replies are shown in this diagram together with an estimate of the base rate of female homosexuality according to Kinsey 1953. See Carlson for further details.

Zucker et al (1996) review eight studies that have explored sexual orientation in women with CAH.

Zucker et al (1996) found that most women with CAH have a female gender identity. However, significantly more women with CAH live as men than would be expected by chance.

They conclude that "excessive exposure to prenatal androgens in women with CAH shifts psychosexual differentiation to a point somewhere in between a female-typical pattern and a male typical pattern."

Points to ponder

  • A woman with CAH was banned from competing in the Olympic Games as a woman. Do you agree with this decision?
  • Do you think a person with male (XY) chromosomes but suffering from Testicular Feminizing Syndrome (see Carlson) should be allowed to enter women's events?
  • How would you decide whether a person should be allowed to compete in mens' or women's events?
  • What tests would you employ? Would you base your testing on a person's sex or gender?

"Boy raised as girl discovers happiness as a man"

According to a nature view of psychosexual differentiation, prenatal exposure to androgen could influence the development of gender identity - the feeling an individual has of being a man or a woman. In contrast the nurture position holds that we are psychosexually neutral at birth and that socialization is responsible for the development of gender identity.

In 1972 Money and Ehrhardt reported the case of a 7 month old baby boy - one of a pair of twins - born in 1963 whose penis was removed after an operation for circumcision damaged the child's penis. At 22 months old the child was surgically reassigned as a girl and brought up according to the prevailing view at the time that we are psychosexually neutral at birth. This case entered the textbooks and informed medical opinion for several decades because Money reported that the child had adapted well as a girl. But long term follow up of this case by Milton Diamond paints a very different picture of the success of this application of the nature theory of psychosexual differentiation.

 Here is a summary of Diamond and Sigmundson's (1997) paper:

Dr Milton Diamond, Hawaii University

"This article is a long-term follow-up to a classic case reported in paediatric, psychiatric, and sexological literature. The penis of an XY individual was accidentally ablated and he was subsequently raised as a female. Initially this individual was described as developing into a normally functioning female. The individual, however, was later found to reject this sex of rearing, switched at puberty to living as a male, and has successfully lived as such from that time to the present. The standard in instances of extensive penile damage to infants is to recommend rearing the male as a female. Subsequent cases should, however, be managed in light of this new evidence."

Here is a newspaper account of the case:

The story of a boy who was raised as a girl seems to show that gender really is all in the genes. Despite the efforts of psychiatrists, surgeons and parents, he never felt happy as a girl and eventually reverted to being a man, got married and is now living happily.

The man's life history is told as a cautionary tale by Milton Diamond, a sexologist at Hawaii University in Archives of Paediatric Adolescent Medicine. He says that it is the first long-term follow-up of a male with the normal allotment of XY chromosomes who was raised as a female.

Dr Diamond says that the problems for "John" began when he was eight months old, in 1963. An accident during circumcision left him without a penis. His parents took him to Johns Hopkins University in Baltimore, Maryland, where experts said that the best thing would be to raise him as a girl.

His testicles were surgically removed and an artificial vagina created, as is done in sex-change operations. John became Joan.

The result, says Dr Diamond, has often been extolled as the classic demonstration of how the environment can override nature in forming gender identity. In fact, he says, it was nothing of the sort; it was a disaster.

Despite being raised as a girl, Joan never felt happy. At 12, she was given oestrogen therapy to complete the conversion to a woman. She grew breasts, but was never accepted by other girls, nor felt comfortable as a woman.

At 14, she rebelled, confessing to her doctor: "I suspected I was a boy since the second grade." She was eventually given a mastectomy to remove the breasts and was given male hormones. At the age of 25, now John once more, he married a woman who already had children.

Dr Diamond says that the case history has implications for any child born with ambiguous sexuality. "Keep your knife away," he says. "Let the kids make a decision when they get older."

Michael Bailey, a psychologist at Northwestern University, Illinois, told Science Now, a daily science news service run by Science magazine, that the case was heralded by many as the pinnacle of proof that psycho-social factors could override biological factors in determining gender.

Textbooks continued to claim that Joan made a successful adjustment, in spite of contradictory evidence. Dr Diamond's report, says Dr Bailey, "suggests that, if anything, how you're reared matters little".

(Text extract from The Times, March 15 1997, by Nigel Hawkes. Pictures captured from a BBC TV programme "The boy who was turned into a girl", broadcast in December 2000)

Effect of testosterone on the brain

We have seen that early exposure to testosterone affects the external genitalia and adult behaviour, but does it also change the brain? This is an important question. There is evidence that the brains of male and female rodents are structurally different, and that this sexual dimorphism is caused by exposure to androgen during a critical period of development.

An area of the hypothalamus at the base of the brain called the sexually dimorphic nucleus of the preoptic area (SDN-POA) is much larger in male rats than in females. These diagrams show the location of this sexual dimorphism. You can load an animation that explains the relationship between the saggital and coronal views of the brain in a separate browser window.

  Sagittal view of rat brain Coronal section of rat brain

Click your mouse on parts of the brain to reveal their names.


  • SDN : sexually dimorphic nucleus
  • POA : preoptic area
  • SDN-POA : sexually dimorphic nucleus of the preoptic area


This animation shows you the location of the SDN and POA within the brain

Use arrow / slider to rotate brain


These pictures of sections through the preoptic area of the rat brain show that:

The size of the sexually dimorphic nucleus is affected by the presence or absence of testosterone during a critical period around birth (neonatal) .

Dr Roger Gorski,

Location of INAH nuclei in humans

There are four interstitial nuclei of the anterior hypothalamus (INAH) in the human brain that may be homologues (similar in structure and evolutionary origin) of the rat's sexually dimorphic nuclei (SDN).

This diagram shows a coronal section through the human hypothalamus at the level of the optic chiasm (OC). The four cell groups (INAH1, 2, 3 and 4) studied by Le Vay, (Science, Vol. 253, page 1034, 30th August 1991) are indicated by the corresponding numbers.

INAH nuclei in human hypothalamus img024.jpg (20493 bytes) Le Vay (1991) reported that:
  • INAH3 is larger in heterosexual men than in  women assumed to be heterosexual
  • INAH3 is larger in heterosexual men than in homosexual men
  • INAH3 is similar in size in homosexual men and heterosexual women

However it is quite difficult to interpret these results:

  • many of the homosexual men died of AIDS - what is the effect of AIDS on INAH3 size?
  • does a small INAH3 cause homosexuality? or
  • does homosexuality reduce the size of INAH3?
  • Is some unknown 'third factor' responsible for homosexuality and reduced INAH3 volume?
  • These results have not been replicated by an independent group of scientists

Caveat! This table (redrawn from Byne, 1994) shows that there is no clear agreement between researchers in which INAH nuclei differ between the sexes.

Researchers Brain region
Swaab & Fliers, 1985 Larger in men Not studied Not studied Not studied
Allen et al, 1989 No sex difference Larger in men than in some women Larger in men No sex difference
LeVay, 1991 No sex difference No sex difference Larger in heterosexual men than in women or homosexual men No sex difference

The debate moves on

In the 23 October, 1997 issue of Nature, Dr Marc Breedlove of the University of California, Berkeley provided an insight into these important questions.

"Breedlove studied male rats that copulated freely with constantly receptive females, and compared the structures of certain nerve tracts in their spinal cords with those of male rats caged with unreceptive females, and which therefore did not have the opportunity for intercourse. The nerve tracts studied by Dr Breedlove are known to be influenced by sexual factors, notably the presence of the male sex hormone testosterone. The result was clear -- sexual activity has an effect on the structure of the nervous system. The relevant nerve tracts were smaller in males that were free to copulate than in those that remained celibate. "
You can read more about this important piece of research in the Nature article Lifelines: Sex on the brain by Henry Gee

LH response & sexual orientation

LH response and sexual orientation A neuroendocrine component, the positive estrogen feedback effect, thought to be related to sexual orientation and, indirectly, to sexual differentiation, was evaluated in healthy, non-institutionalized research volunteers. 

Men and women with a lifelong heterosexual orientation and men with a lifelong homosexual orientation were administered an estrogen preparation known to enhance the concentration of luteinizing hormone in women but not in men. 

The secretory pattern of luteinizing hormone in the homosexuals in response to estrogen was intermediate between that of the heterosexual men and that of the women. 

The diagram shows changes in LH in response to a single injection of Premarin. From: Gladue et al, Science, 225, 1496-1499, 1984.

The interpretation of these results have been challenged and more recent studies have failed  to replicate the effect (Bem, 1996).

Popular belief & base rate of homosexuality

Popular belief & base rate of homosexuality

.. 43% of Americans believe that 'young homosexuals became that way because of older homosexuals'

In an interview with Science in 1992 Bailey stated:
'No one has ever found a postnatal social environmental influence for homosexual orientation - and they have looked plenty'

Changes in the psychiatric status of homosexuality

  • Until the early 1970's the study of homosexuality remained mostly in the domains of psychiatry. Different theories about the origins of homosexuality were advanced. Most of the theories associated homosexuality with psychopathology, caused by faulty upbringing, which included a domineering mother, a detached father or both. Inaccurate as this assumption was, it was not surprising because psychiatrists obtained their data only from people in therapy who had mental or emotional problems.
  • In 1972 & 73 the American Psychiatric Assoc. deleted homosexuality as a disease from their diagnostic handbooks.
  • The term "sexual preference" was introduced in the 1970's to correct the earlier concept that homosexuality was a disease or deviation.
  • After 1982, as more scientists found evidence that homosexuality & heterosexuality may not be a matter of free choice, the term "sexual orientation" emerged & is commonly used today.

Genetic Studies of homosexuality

Point to ponder: If homosexuality is due to a person's genetic make-up, how could the gene survive? Surely it would have disappeared due to homosexuals fathering less children?

Bem's developmental theory of sexual orientation

In a recent article Bem (1996) has argued that nature sets the scene for nurture to determine sexual preferences:

bem_figure.gif (6993 bytes) Abstract:

"A developmental theory of erotic/romantic attraction is presented that provides the same basic account for opposite-sex and same-sex desire in both men and women. It proposes that biological variables, such as genes, prenatal hormones, and brain neuroanatomy, do not code for sexual orientation per se but for childhood temperaments that influence a child's preferences for sex-typical or sex-atypical activities and peers. These preferences lead children to feel different from opposite- or same-sex peers--to perceive them as dissimilar, unfamiliar, and exotic. This, in turn, produces heightened nonspecific autonomic arousal that subsequently gets eroticized to that same class of dissimilar peers: Exotic becomes erotic. Specific mechanisms for effecting this transformation are proposed. The theory claims to accommodate both the empirical evidence of the biological essentialists and the cultural relativism of the social constructionists."

Evolutionary theories of homosexuality

If homosexuality is due to a person's genetic make-up, how could the gene survive? Surely it would have disappeared due to homosexuals fathering less children?

"...natural selection should favor heterosexuality as it facilitates reproduction and the propagation of genes. .... what has maintained homosexuality in a small but consistent percentage of the human population?" (Muscarella et al. 2001)

Muscarella et al. (2001) review several evolutionary theories of homosexuality:

It strikes me that Rahman and Wilson's  theory predicts that

At the risk of pointing out the blindingly obvious it is worth bearing in mind that homosexuals are perfectly able to have children.

Seminar discussion topics

Read Francis (2000) "Is Gender a social construct or a biological imperative?". Paper presented at the Seventh Australian Institute of Family Studies Conference Family futures: issues in research and policy: Sydney 24 - 26 July 2000. Available online

Francis argues that the term 'gender' has been politicized as part of the 'gender agenda' of contemporary feminism. She writes about her experiences in confronting these issues 'in the real world'. What is your position on  the following issues/questions that she encountered:

References and recommended reading that expands on points covered in lecture:

Supplementary Reading

Controversy over Biological Theories of Sexual Orientation

  • The full text of Tahir's article HOMOSEXUALITY - An Analysis of Biological Theories of Causation is worth reading. He provides detailed critisisms of genetic, hormonal and neuroanatomical studies which claim that homosexual behaviour is an innate characteristic like race or gender.
  • Newspaper report of Swaab's work on brain anatomy in transsexuals.
    Abstract:Scientists in Holland have found preliminary evidence that male transsexuals -- men who identify sexually with women -- have a strikingly different brain structure from ``ordinary'' men, at least in one key area about one-eighth of an inch wide. A team of researchers from Amsterdam reports that it conducted post-mortem exams on the brains of six male-to-female transsexuals. Specifically, the researchers studied one particular part of the hypothalamus, called the central division of the bed nucleus of the stria terminalis (BSTc). This area, which is thought to influence sexual behavior, is on average 44 percent larger in men than in women. Yet all six subjects had BSTc regions that were the size of women's, Dick Swaab of the Netherlands Institute for Brain Research and colleagues found.
  • Here is an article that provides a summary of Tahir's critique of Swaab's work on transsexuals and LeVay's work on homosexuals
    Abstract:Critics of Swaab's transsexual study state that the study was performed on a small number of specimens and the results may have been skewed by other factors. For one, only six brains of transsexuals were autopsied. Secondly, all the transsexuals had been exposed to large quantities of estrogen, the feminizing hormone. Hormones can alter the state of the brain and scientists questioned whether the discovered results could have been the result of estrogen use within the samples. Further tests to confirm the results will have to be made before these findings can be seriously analyzed.
    A 1991 published study by Simon LeVay that claimed that an area of the hypothalamus known as INAH3 is smaller in homosexual men and heterosexual women. The report was the result of the study of the brains from 41 cadavers and stated that there was a similarity in the size of the hypothalamus in the gay men and heterosexual women, both smaller than that of the heterosexual men. Tahir again disputes these findings by stating that the study had too many unknown factors to make them valid. For one he states that the sexual histories of the subjects were not absolutely known. Secondly he states that the 19 homosexual subjects had died of AIDS and studies have shown that brain tissue has been documented to deteriorate in patients with AIDS and may have affected the study's results. Lastly, the hypothalamus was larger in 3 of 19 of the homosexual men than in the mean size of the heterosexual men. Dr. Paul Cameron states, "According to [LeVay's] theory, 3 of the 'heterosexuals' should have been homosexual, and 3 of the homosexuals should have been heterosexual. When you completely misclassify 6 of 35, you don't have much of a theory." Both agree the study cannot be considered valid.
  • The Complex Interaction Of Genes And Environment: A Model For Homosexuality by Jeffrey Satinover, MD
    Source: Collected Papers from the NARTH Annual Conference, Saturday, 29 July 1995.
    There is essentially no dimension of behavior which is not both environmentally and genetically influenced. Genes and environment interact in extraordinarily complex ways with each other, as well as among themselves to produce a final result; the environmental influences are multi-factorial and affect each other; in human behavior, the pertinent genes are also multiple. Furthermore, there are very few circumstances where free will plays little or no role in what we do. These facts are true of homosexuality as of all other dimensions of human behavior. Indeed, there are no features of human behavior which are not influenced in some fashion by our genetic makeup and no features of human behavior which are not influenced in some fashion by our environment. more ....
  • Study on the sexual behaviour of American men
    Abstract:This study--known as the 1991 National Survey of Men--was based on what its authors describe as a "nationally representative" sample of 3,321 U.S. males ages 20 to 39. The survey was conducted through interviews done in 1991. It is one of just a few large-scale studies on the topic. The study's most controversial aspect was its finding that only 2 percent of the men it surveyed reported having had sex with other males during the past 10 years, and that just 1 percent indicated that over this time their sexual partner(s) had been exclusively male. Many reacting to the study pointed out that this finding places the survey at odds with other estimates. For example, one study has placed the percentage of men who engage in sexual behavior exclusively with other men as high as 10 percent.

Frequently Aasked Questions (FAQ): Hormone Therapy for Transsexuals

  • FAQ: Hormone Therapy for Female to Male Transsexuals
    Abstract This document contains a list of frequently asked questions and their answers regarding hormone therapy (secondary sexual reassignment) for female-to-male transsexuals. More generally, this document contains information about gonadal hormones and anti-hormones, so it can be a helpful reference for the treatment of androgen and estrogen-sensitive conditions--for example, certain cancers of the reproductive organs and breasts.
  • FAQ: Hormone Therapy for Male to Female Transsexuals
    Abstract This document contains a list of frequently asked questions and their answers regarding hormone therapy (secondary sexual reassignment) for male-to-female transsexuals. More generally, this document contains information about gonadal hormones and anti-hormones, so it can be a helpful reference for the treatment of androgen and estrogen-sensitive conditions--for example, certain cancers of the reproductive organs and breasts.

The Endocrine Society Factsheets

  • Congenital adrenal hyperplasia
    What is CAH?
    CAH is a disease that affects the manufacture of the "stress" hormone, cortisol. Cortisol is produced by the adrenal gland, a small organ near the kidney. CAH occurs in two forms: severe or "classical" and mild or "nonclassical." Girls with classical CAH are born with masculine-appearing external genitals but with female internal sex organs. Boys with classical CAH look normal at birth, so their diagnosis of CAH is sometimes missed. People with CAH are likely to have trouble retaining salt, a condition that can be life-threatening. Everyone with CAH also has unusually high levels of the male sex hormone testosterone in their blood. Among the difficulties it causes are infertility, excessive hair growth, acne, and early growth of sexual hair. In addition, adrenal crises can occur and result in death.
  • Turner's syndrome
    What is Turner's syndrome?
    Turner's syndrome is a relatively common disease in females, affecting many body systems. In this genetic disorder, the absence of all or part of one sex chromosome is associated with short stature and failure to mature sexually. Other problems can include learning difficulties, heart and kidney abnormalities, infertility, and thyroid dysfunctions.

American Psychological Association publication

Electronic access to Plymouth library journals

HEFCE, the funding body for universities and colleges for the UK, has purchased a licence to IDEAL, the Academic Press online journal library. If you are a member of a UK academic institution (HEFCE funded) you now have full access rights to this online library which enables you to read the full text of articles in Academic Press journals.
For example, the following articles in the journal Hormones and Behavior cover topics raised in the lecture in greater depth:

  • Psychosexual Development of Women with Congenital Adrenal Hyperplasia, Kenneth J. Zucker,Susan J. Bradley,Gillian Oliver,Jennifer Blake,Susan Fleming,Jane Hood. Hormones and Behavior, v 30,n 4,300-318,1996
  • Effects of Early Androgens on Sex-Typed Activities and Interests in Adolescents with Congenital Adrenal Hyperplasia, Sheri A. Berenbaum, Hormones and Behavior, v 35, n 1, February 1999, p102-110

E-mail from Cheryl Chase, Executive Director, Intersex Society of North America

Dear Dr. Kenyon,
I happened upon your "Gender Differences" integrative topic page while searching for popular media coverage of the following new report.
Bradley, Susan J., Gillian D. Oliver, Avinoam B. Chernick, and Kenneth J. Zucker. 1998. Experiment of Nurture: Ablatio Penis at 2 Months, Sex Reassignment at 7 Months, and a Psychosexual Follow-up in Young Adulthood. Pediatrics (Electronic Pages) 102 (1):E9. http://www.pediatrics.org/cgi/content/full/102/1/e9
You have provided your students with a wide variety of challenging and interesting material. But, for understanding the experience of intersexuality (as opposed to how it has been used to support various "scientific" agendas, also an important topic of study), I recommend that you send them where intersexuals speak for themselves.
Please do visit our web site, www.isna.org. From there you can reach the web sites of a variety of intersex support groups in worldwide.
Cheryl Chase
Intersex Society of North America

Copyright Dr. C.A.P. Kenyon 1994-2006

 olfactory lobecerebral cortexcerebellumspinal cord male sexually dimorphic nucleusfemale sexually dimorphic nucleusthird ventricleanterior commisurecorpus callosum